Ethanolamine Utilization in Bacteria

نویسندگان

  • Karan Gautam Kaval
  • Danielle A. Garsin
چکیده

Ethanolamine (EA) is a valuable source of carbon and/or nitrogen for bacteria capable of its catabolism. Because it is derived from the membrane phospholipid phosphatidylethanolamine, it is particularly prevalent in the gastrointestinal tract, which is membrane rich due to turnover of the intestinal epithelium and the resident microbiota. Intriguingly, many gut pathogens carry the eut (ethanolamine utilization) genes. EA utilization has been studied for about 50 years, with most of the early work occurring in just a couple of species of Enterobacteriaceae Once the metabolic pathways and enzymes were characterized by biochemical approaches, genetic screens were used to map the various activities to the eut genes. With the rise of genomics, the diversity of bacteria containing the eut genes and surprising differences in eut gene content were recognized. Some species contain nearly 20 genes and encode many accessory proteins, while others contain only the core catabolic enzyme. Moreover, the eut genes are regulated by very different mechanisms, depending on the organism and the eut regulator encoded. In the last several years, exciting progress has been made in elucidating the complex regulatory mechanisms that govern eut gene expression. Furthermore, a new appreciation for how EA contributes to infection and colonization in the host is emerging. In addition to providing an overview of EA-related biology, this minireview will give special attention to these recent advances.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative genomics of ethanolamine utilization.

Ethanolamine can be used as a source of carbon and nitrogen by phylogenetically diverse bacteria. Ethanolamine-ammonia lyase, the enzyme that breaks ethanolamine into acetaldehyde and ammonia, is encoded by the gene tandem eutBC. Despite extensive studies of ethanolamine utilization in Salmonella enterica serovar Typhimurium, much remains to be learned about EutBC structure and catalytic mechan...

متن کامل

Minimal functions and physiological conditions required for growth of salmonella enterica on ethanolamine in the absence of the metabolosome.

During growth on ethanolamine, Salmonella enterica synthesizes a multimolecular structure that mimics the carboxysome used by some photosynthetic bacteria to fix CO(2). In S. enterica, this carboxysome-like structure (hereafter referred to as the ethanolamine metabolosome) is thought to contain the enzymatic machinery needed to metabolize ethanolamine into acetyl coenzyme A (acetyl-CoA). Analys...

متن کامل

Multiple posttranscriptional regulatory mechanisms partner to control ethanolamine utilization in Enterococcus faecalis.

Ethanolamine, a product of the breakdown of phosphatidylethanolamine from cell membranes, is abundant in the human intestinal tract and in processed foods. Effective utilization of ethanolamine as a carbon and nitrogen source may provide a survival advantage to bacteria that inhabit the gastrointestinal tract and may influence the virulence of pathogens. In this work, we describe a unique serie...

متن کامل

Functions required for vitamin B12-dependent ethanolamine utilization in Salmonella typhimurium.

When B12 is available, Salmonella typhimurium can degrade ethanolamine to provide a source of carbon and nitrogen. B12 is essential since it is a cofactor for ethanolamine ammonia-lyase, the first enzyme in ethanolamine breakdown. S. typhimurium makes B12 only under anaerobic conditions; in the presence of oxygen, exogenous B12 must be provided to permit ethanolamine utilization. Genes required...

متن کامل

Ethanolamine activates a sensor histidine kinase regulating its utilization in Enterococcus faecalis.

Enterococcus faecalis is a gram-positive commensal bacterium of the human intestinal tract. Its opportunistic pathogenicity has been enhanced by the acquisition of multiple antibiotic resistances, making the treatment of enterococcal infections an increasingly difficult problem. The extraordinary capacity of this organism to colonize and survive in a wide variety of ecological niches is attribu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2018